double angle

[SQA] 1. Solve the equation $3\cos 2x^\circ + \cos x^\circ = -1$ in the interval $0 \le x \le 360$.

- [SQA] 2. (a) Solve the equation $\sin 2x^\circ \cos x^\circ = 0$ in the interval $0 \le x \le 180$.
 - (*b*) The diagram shows parts of two trigonometric graphs, $y = \sin 2x^{\circ}$ and $y = \cos x^{\circ}$.

Use your solutions in (*a*) to write down the coordinates of the point P.

[SQA] 3. Functions f and g are defined on suitable domains by $f(x) = \sin(x^{\circ})$ and g(x) = 2x.

- (*a*) Find expressions for:
 - (i) f(g(x));
 - (ii) g(f(x)).
- (b) Solve 2f(g(x)) = g(f(x)) for $0 \le x \le 360$.
- [SQA] 4. The diagram shows two curves with equations $y = \cos 2x^\circ$ and $y = 1 + \sin x^\circ$ where $0 \le x \le 360$.

Find the x-coordinate of the point of intersection at A.

[SQA] 5. Solve the equation $\cos 2x^\circ + 5 \cos x^\circ - 2 = 0$, $0 \le x < 360$.

[SQA] 6. Solve the equation
$$\cos 2x^\circ + \cos x^\circ = 0$$
, $0 \le x < 360$.

[SQA] 7. Solve the equation $\sin 2x^\circ + \sin x^\circ = 0$, $0 \le x < 360$.

2

4

5

5

5

4

[SQA] 8.

- (*a*) Show that $2\cos 2x^{\circ} \cos^2 x^{\circ} = 1 3\sin^2 x^{\circ}$.
- (b) Hence solve the equation $2\cos 2x^\circ \cos^2 x^\circ = 2\sin x^\circ$ in the interval $0 \le x < 360$.
- [SQA] 9. (a) Solve the equation $3\sin 2x^\circ = 2\sin x^\circ$ for $0 \le x \le 360$
 - (b) The diagram below shows parts of the graphs of sine functions f and g. State expressions for f(x) and g(x).
 - (c) Use your answers to part (a) to find the co-ordinates of A and B. (2)
 - (d) Hence state the values of x in the interval $0 \le x \le 360$ for which $3\sin 2x^{\circ} < 2\sin x^{\circ}$.

[SQA] 10. The diagram shows an isosceles triangle PQR in which PR = QR and angle $PQR = x^{\circ}$.

(a) Show that
$$\frac{\sin x^{\circ}}{p} = \frac{\sin 2x^{\circ}}{r}$$
.
(b) (i) State the value of x° when $p = r$.
(ii) Using the fact that $p = r$, solve the equation in (a) above, to justify your stated value of x° .
Q p R

11. Solve
$$2\cos 2x - 5\cos x - 4 = 0$$
 for $0 \le x < 2\pi$.

5

(3)

(5)

2

4

(4)

(1)

(3)

[SQA] 12. On the coordinate diagram shown, A is the point (6,8) and B is the point (12, -5). Angle AOC = p and angle COB = q. Find the exact value of sin(p + q).

A(6,8)

¥₹

0

q

[SQA] 14. The framework of a child's swing has dimensions as shown in the diagram on the right. Find the exact value of sinx^o.

4

4

 \hat{x}

B(12, -5)

[SQA] 15. A ship is sailing due north at a constant speed. When at position A, lighthouse L is observed on a bearing of *a*°. One hour later, when the ship is at position B, the lighthouse is on a bearing of *b*°. The shortest distance between the ship and the lighthouse during this hour was *d* miles.

(a) Prove that
$$AB = \frac{d}{\tan a^\circ} - \frac{d}{\tan b^\circ}$$
.

(b) Hence prove that
$$AB = \frac{d \sin(b-a)^{\circ}}{\sin a^{\circ} \sin b^{\circ}}$$
.

(c) Calculate the shortest distance from the ship to the lighthouse when the bearings a° and b° are 060° and 135° respectively and the constant speed of the ship is 14 miles per hour.

[SQA] 16.

- (a) Using the fact that $\frac{7\pi}{12} = \frac{\pi}{3} + \frac{\pi}{4}$, find the exact value of $\sin\left(\frac{7\pi}{12}\right)$.
- (b) Show that sin(A + B) + sin(A B) = 2 sin A cos B.
- (c) (i) Express $\frac{\pi}{12}$ in terms of $\frac{\pi}{3}$ and $\frac{\pi}{4}$.
 - (ii) Hence or otherwise find the exact value of $\sin\left(\frac{7\pi}{12}\right) + \sin\left(\frac{\pi}{12}\right)$.
- [SQA] 17. In the diagram, A and B have coordinates as shown. Express $\sin A\hat{O}B$ in terms of a and b.

[SQA] 18. Using triangle PQR, as shown, find the exact value of $\cos 2x$.

(3)

(3)

3

2

4

4

[SQA] 19. Given that $\cos D = \frac{2}{\sqrt{5}}$ and $0 < D < \frac{\pi}{2}$, find the exact values of $\sin D$ and $\cos 2D$. 3

[SQA] 20. Given that $\sin A = \frac{3}{4}$, where $0 < A < \frac{\pi}{2}$, find the exact value of $\sin 2A$. 3

[SQA] 21. For acute angles *P* and *Q*, $\sin P = \frac{12}{13}$ and $\sin Q = \frac{3}{5}$. Show that the exact value of $\sin(P + Q)$ is $\frac{63}{65}$. **3**

[SQA] 22. Find the exact value of
$$\sin \theta^{\circ} + \sin(\theta^{\circ} + 120^{\circ}) + \cos(\theta^{\circ} + 150^{\circ})$$
. 3

[SQA] 23. If
$$\cos \theta = \frac{4}{5}$$
, $0 \le \theta < \frac{\pi}{2}$, find the exact value of
(a) $\sin 2\theta$
(b) $\sin 4\theta$.

[SQA] 24. Given that $\tan \alpha = \frac{\sqrt{11}}{3}$, $0 < \alpha < \frac{\pi}{2}$, find the exact value of $\sin 2\alpha$.

[SQA] 26. If x° is an acute angle such that $\tan x^{\circ} = \frac{4}{3}$, show that the exact value of $\sin(x^{\circ} + 30^{\circ})$ is $\frac{4\sqrt{3} + 3}{10}$.

3

3

- [SQA] 27. *A* and *B* are acute angles such that $\tan A = \frac{3}{4}$ and $\tan B = \frac{5}{12}$. Find the exact value of
 - (a) $\sin 2A$
 - (b) $\cos 2A$
 - (c) $\sin(2A + B)$.
- [SQA] 28. The diagram shows a circle of radius 1 unit and centre the origin. The radius OP makes an angle a° with the positive direction of the *x*-axis.

- (a) Show that P is the point (cosa°, sina°).
 (b) If PÔQ = 45°, deduce the coordinates of Q in terms of a.
 (c) If PÔR = 45°, deduce the coordinates of R in terms of a.
 (d) Hence find an expression for the gradient of QR in its simplest form.
- (e) Show that the tangent to the circle at P is parallel to QR.

2

1

2

1

1

1

4

- (c) (i) Find the value of sin(a b).
 - (ii) State the value of sin(b a).

[SQA] 30.

- (*a*) Write the equation $\cos 2\theta + 8\cos \theta + 9 = 0$ in terms of $\cos \theta$ and show that, for $\cos \theta$, it has equal roots.
- (*b*) Show that there are no real roots for θ .

4

3

- [SQA] 31. Functions $f(x) = \sin x$, $g(x) = \cos x$ and $h(x) = x + \frac{\pi}{4}$ are defined on a suitable set of real numbers.
 - (*a*) Find expressions for:
 - (i) f(h(x));
 - (ii) g(h(x)).
 - (b) (i) Show that $f(h(x)) = \frac{1}{\sqrt{2}} \sin x + \frac{1}{\sqrt{2}} \cos x$.
 - (ii) Find a similar expression for g(h(x)) and hence solve the equation f(h(x)) g(h(x)) = 1 for $0 \le x \le 2\pi$.

[END OF QUESTIONS]

2